Hyperglycemia Promotes TMPRSS2-ERG Gene Fusion in Prostate Cancer Cells via Upregulating Insulin-Like Growth Factor-Binding Protein-2
نویسندگان
چکیده
Background Epidemiologic evidence shows that obesity is associated with a greater risk of aggressive prostate cancer (PCa) and PCa-specific mortality and this is observed mainly in men with the TMPRSS2-ERG gene fusion. Obesity is often associated with comorbid conditions such as type 2 diabetes and hyperglycemia: we investigated whether some of the exposures associated with disturbed metabolism can also affect the frequency of this gene fusion. Methods Fusion was induced in LNCaP PCa cells in normal or high levels of glucose, with or without insulin-like growth factor binding protein-2 (IGFBP-2) silenced or the presence of insulin-like growth factor-1 (IGF-I), insulin, or epidermal growth factor (EGF). RNA was extracted for analysis by nested PCR. Abundance of IGFBP-2, γH2AX, DNA-dependent protein kinase catalytic subunit (DNAPKcs), and β-actin were analyzed by Western immunoblotting. Results Our data suggest that hyperglycemia-induced IGFBP-2 increased the frequency of the gene fusion that was accompanied by decreased levels of DNAPKcs implying that they were mediated by alterations in the rate of repair of double-strand breaks. In contrast insulin, IGF-I and EGF all decreased gene fusion events. Conclusion These novel observations may represent a further mechanism by which obesity can exert an effect aggravating PCa progression.
منابع مشابه
TMPRSS2-ERG fusion protein regulates insulin-like growth factor-1 receptor (IGF1R) gene expression in prostate cancer: involvement of transcription factor Sp1
Prostate cancer is a major health issue in the Western world. The most common gene rearrangement in prostate cancer is the TMPRSS2-ERG fusion, which results in aberrant expression of the transcription factor ERG. The insulin-like growth factor-1 receptor (IGF1R) plays a key role in cell growth and tumorigenesis, and is overexpressed in most malignancies, including prostate cancer. In this study...
متن کاملSignaling and Regulation Abnormal Expression of the ERG Transcription Factor in Prostate Cancer Cells Activates Osteopontin
Osteopontin (OPN) is an extracellular matrix glycophosphoprotein that plays a key role in the metastasis of a wide variety of cancers. The high level of OPN expression in prostate cells is associated with malignancy and reduced survival of the patient. Recent studies on prostate cancer (PCa) tissue have revealed recurrent genomic rearrangements involving the fusion of the 50 untranslated region...
متن کاملSignificance of the TMPRSS2:ERG gene fusion in prostate cancer
The transmembrane protease serine 2:v‑ets erythroblastosis virus E26 oncogene homolog (TMPRSS2:ERG) gene fusion is common in prostate cancer, while its functional role is not fully understood. The present study aimed to investigate the significance of the TMPRSS2:ERG gene fusion in human prostate cancers using bioinformatics tools. Comprehensive alteration analysis of TMPRSS2 and ERG in 148 dif...
متن کاملERG deregulation induces IGF-1R expression in prostate cancer cells and affects sensitivity to anti-IGF-1R agents
Identifying patients who may benefit from targeted therapy is an urgent clinical issue in prostate cancer (PCa). We investigated the molecular relationship between TMPRSS2-ERG (T2E) fusion gene and insulin-like growth factor receptor (IGF-1R) to optimize the use of IGF-1R inhibitors.IGF-1R was analyzed in cell lines and in radical prostatectomy specimens in relation to T2E status. ERG binding t...
متن کاملTMPRSS2-ERG Fusion Gene Expression in Prostate Tumor Cells and Its Clinical and Biological Significance in Prostate Cancer Progression.
TMPRSS2-Ets gene fusions were identified in prostate cancers where the promoter of transmembrane protease, serine 2 (TMPRSS2) fused with coding sequence of the erythroblastosis virus E26 (Ets) gene family members. TMPRSS2 is an androgen responsive transmembrane serine protease. Ets family members are oncogenic transcription factors that contain a highly conserved Ets DNA binding domain and an N...
متن کامل